Explosive Cladding of Metals

Explosion bonded clad plates by means of vacuum technology

Introduction

- Introduction of SMT
- What is explosive cladding?
- The explosive cladding proces
- Applications
- Advantages explosive cladding
- Why explosive cladding in vacuum
- Quality control
- Processing cladmaterial and conclusion

Introduction SMT

Our Market Areas

- Starting vacuum technology in 1985
- Worldwide active

West Europe East Europe

Production in 3 vacuum chambers

Middle East

Activity: explosive cladding

Mille

Additional value such as technical recommendations and metallurgical support

South Africa

Material Inspection

STEP 1: PLAIN MATERIAL INSPECTION

CLAD LAYER

BASE MATERIAL

Carbon steel grinding and preparing

STEP 2: GRINDING

CLADIAYER

BASE MATERIAL

Set-up with stand-off space

STEP 3: SET-UP

CLAD LAYER

BASE MATERIAL

Explosion

STEP 4: EXPLOSION IN VACUUM CHAMBER

Flattening by rolling or pressing

STEP 5: FLATTENING & CUTTING

US and mechanical testing

STEP 6: INSPECTION & TESTING

The explosive cladding process

- Grinding of the surfaces
- Set-up
- Preparation of explosion process
- Explosion welding

The explosive cladding process during a snapshot

Mechanism of atomic bond

Process configurations

- Possible process configurations:
 - Flat plates (square and rectangular)
 - Round discs (heads and tubesheets)

Dimensions and capacity

Maximum sizes and capacity:

Maximum Length: ± 14 meter

Maximum width: ± 4 meter

Maximum total area: 30 m²

Lifting capacity
30 metric tons

Base material thickness: 10 - 500 mm

Clad material thickness: 1 - 25 mm

Properties metal joint

- Properties of the explosive metal joint
 - Homogeneous integral of two or more dissimilar metals
 - Joint bond stronger than the weakest material
 - Original metal properties are remaining
 - Good thermal and electrical conductivity
 - Oxide free
 - Atomic bond
 - No crevices

Applications

- Chemical and Petrochemical Industry
 - Base material
 - relative cheap material with good mechanical properties
 - Clad layer
 - expensive thin layer, good corrosion resistant
 - Applications
 - Tube sheets, reactors, heat exchangers, condensors, vessels, etc

Metal combinations

- Often used metal combinations:
 - Titanium / Carbon_steel
 - Titanium / Stainless Steel
 - Aluminium Bronze / Carbon steel
 - Stainless Steel / Carbon steel
 - Nickel + Alloys / Carbon Steel
 - Hastelloy / Carbon Steel
 - Duplex Super Duplex / C-steel
 - Aluminium / Carbon steel

Marine applications

• Triplate®: Shipbuilding

Aluminium/Steel transition joints

Base material: Carbon Steel

Interlayer: Aluminium 99,5

Super layer: AlMg4,5Mn

- Cutting into bars from tested clad plates
- Straightening and marking
- Enables to weld the aluminium superstructure to the steel hull
- Examples: mega yachts, cruise vessels, ferries, tenders, fishing vessels

Advantages Explosive Cladding

- Metal combinations possible which are conventional impossible to weld i.e.: Ti/Steel, Cu/Al, Al/Steel etc.
- Saves costs: thin layer of expensive material cladded on a thicker layer of cheap material
- Original metal properties remains
- Joint bond stronger than the weakest material

Advantages explosive cladding

- Low electrical resistance of anode/cathode blocks
- Required clad layer thickness in one step realized
- Smooth surface after cladding
- Save expensive material
- Intermediate quality control not necessary

Why explosive cladding in vacuum?

- Vacuum cladding
 - Cladding in a vacuum chamber
 - Under pressure: 50 mBar
 - Noise level: 70 dB(A)
 - Environmental friendly
 - No air in the stand-off space during welding
 - No turbulence in the interface
 - Optimal process control such as:
 - Detonation velocity, vacuum condition, temperature, moisture, stand-off space, etc.

Three different interfaces

Smooth wave interface

Undulating wave interface

Perfect wavy interface due to vacuum cladding

200 um

Oxides caused by washing of waves (open air)

Side bend and hammer bend test

Side Bend Test 90°

Micro shear cracks caused by high waves

- Special when the clad metal is less ductile
- Neglect risk by using vacuum technology

Atmospheric versus vacuum

Technical support

- SMT is supporting their customers in order to achieve an optimal operation condition
- An important issue is the welding procedure and recommendations
- And of course the <u>do's</u> and the <u>dont's</u>
- Moreover we are grinding the contact surfaces to reduce the resistance after welding to the anode and steel bracket

The vacuum chamber

Entrance of the vacuum chamber

Cladding set-up just before the explosion welding process

Quality control

- Procedures according to ISO 9001 (since 199
- Testing of the explosive cladded material:
 - Ultrasonic Testing
 - Destructive testing:
 - Tensile test
 - Bend tests
 - Shear test
 - Impact tests
 - Fatigue test

Thank you very much for your attention

